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The present paper 1s concerned with the waves generated by a shlp moving in
an incompressible, viscous fluid of infinite depth. The motion 1s assumed
rectllinear with uniform acceleration and with zero lnitial velocity, although
the last restriction is not in principle necessary. In order to simplify
the problem, the ship 1s replaced by & point impulse of pressures.

A solution was obtained in [1] for the waves generated by a surface pres-
sure dilstribution po(x, v t) on the surface of a viscous, incompressible
liquid of Infinite depth initially at rest; the equation of the free surface
was found to be t o0 o0
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The origin of coordinates is taken at the free surface in the equilibrium
position, with the z-axis dlrected vertically upward.

Under the assumptlion that the ship moves in the negative x-direction, the
expression for p, 18 found in the glven case to be

Po (x, ¥, ) = Q8 (v) 8 (z -} Vyat?)

where @ 1s the acceleration of the ship, and ¢ 1s the constant intensity
of the impulse. When thls expression is substituted into (1), the equation
of the free surface assumes the form
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The properties of the $§-function permit this to be written 1in the form.
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A change of variables 1s useful at this point, Let «r’m¢—1, x'=x+kat?,
i,e. let the origin of coordinates be placed at the point impulse; 4t the
same time, ¢ = O conrresponds to the origin of coordinates, while the time ¢
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rorresponds to the start of the motion. With the primes dropped from x &nd
T , we obtain
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Preparatory to finding the integral in Equation (3) by the method of sta-
tionary phase, it is rewritten in the form
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The condition of stationary phase leads to the following relationship

dr 2r
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Here dr/d4r 4s found in accordance with Equation (4), and g 1s the
angle betwnen the vector p and the negative y-direction (Fig.l). Expres-
sion (6) is more conveniently written in the form

r=10a1( — t)cos O (7)

The significance of this relationship lies in the fact that for a given
point plx, y),it determines those points ¥
on the ocourse of the ship that alome play a role ln
generating a disturbance at P and which, follow-

g Py ing Stoker, will be callied influence points. Equa-

r tin (7) mey be interpreted also in & different way:

. P it ylelds the polar coordinates r,p relative

0 x to a pole at ¥, of all points for which ¥,

4] ig an influence point in the above sense.

|3 gtr-9T Thege points lle on a circle of diameter

4 4 far(t — v) and whose center lies on the ship's

r=atr-10 course at a distance ?tf — %ar® from the

| m— 2 origin of coordinates {Pig.l). It 1s now clear

Fig. 1 that the disturbance generated by the ship does

¢ not affect the entire 1liquid surface, but is
limited to the region covered by the totality
of circles of influence. The boundary of this region will be the envelope
of & one-parameter family of oircles of influence. The equation of the
feamily of these circles 1is

(x — ¥att + Yatd)? 4 y? = Vigalt? (t — 1) 0Ty 8)
Differentiation with respect to the parameter «r yields
(x —¥Y,att + Yat?) (at — Yyat) = Yadr (t — 1) (¢t — 27) 9
From this it follows that
4t — 3t _G"" (t — 3¢
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The parameter <« , having the dimensions of time, can be replaced by a
dimsnsionless parameter o , defined by the relationship r=at, 0<a < 1
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The equation defining the boundary of the region of influence is then
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Fig.2 depicts the boundaries for various values of time ¢ (in the moving
system of coordinates). The dashed line repre-
sents the reglion of influence in uniform motion.
Calculation shows that the angle of spread of the
at? disturbance zone depends upon nelther accelera-
—_ tion nor time, and coincildes with the value of
2 the angle in uniform motion. The reglon 1s now,
z however, bounded by & closed curve, changing with
time and similar relatlve to the origin of coor-
dinates, with the similarity coefficient gat?.

Construction of curves of constant phase 1s the
Fig. » next step. The coordinates of points plx, y) at
* which the disturbance is to be calculated can be
written 1n the form

z=0Q — rcos® = att — Y,a1* — rcos 9, y == rsin0
In view of condition (7), x and y cam be expressed in terms of r as
follows
at? 2r2 4r? s
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Next is found the locus of points for which the phase ¢ = 1/,gt2r™! = const.

Writing r in terms of ¢ leads to the equation of the curves of con-
stant phase
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These formulas can be simplified; introduction of the quantity o -ig/a@
and the dimensionless ratio a leads to the result
at? o at?  co?
=g @0 —)—3a+2, y=tgr—gVET-—d—2a+1 (1)
Inasmuch as the subradical expression in the above formula cannot be nega-
tive, limits to the variation 1in o are given by the inequality
0<ag (4 ot

Ascribing some fixed value to ¢ &and varying a within the above,limits
results in a constant-phase curve., The shape of these curves 1s shown in
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Fig.3. Clearly visible are the systems of divergent and transverse waves,
Just as 1in uniform motion. From Equations (11) 1t follows

dr _at [20%(1 — ) — 3a} (2 — &%) + 6a — 2]
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dy  __aft co [20% (4 — &) — a2 (2 — ) + Ba— 2]
do =T 72 t—apVar(l — ) —2a+ 1
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The singular points of the curves correspond to the values .q = q, , for
which

M, ) =0 (1 — % — 3 (2 — %) + ba — 2= 0 (18

These points lie on the boundary of the region of disturbance. It is also
apparent from the construction that the system of divergent waves is obtained
es q varies in the interval 0 <o <a,, while transverse waves correspond
to values of o within the limits o, <<a< (14 ¢)L

It can be shown that curves of constant phase are normal to lines drawn
back to the corresponding influence points. Indeed, from Equations (12) 1t
follows that 1

ly [4ed
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Here Equation (7) was used, which leads to the result
tan § = -+ {a (1 — ¢2) — 2a + 1172 (ca)~1

Equation (14%) shows that the curves of constant phase are indeed orthogo-
nal to lines drawn back to the corresponding influence points (Fig.3). Since
through each point lying within the reglon of disturbance (with the exception
of those lying on the ship's course) there pass two curves of constant phase,
each such point is assoclated with two influence points. Also worthy of note
%s t):hat when o = (1 + )", x = 0p (Fig.3), and it follows from Equation

1.),

(14)
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Now the length of the transverse waves can be found, since a change in
phase of 2n corresonds to & wave length. Indeed,

at® 4nag
2 (g+ 229) (¢ + 4na + 2a9)

With increasing distance from the origin of coordinates, the phase
increases from O to « , and hence the length of the transverse. waves goes
not stay constant, as in uniform motion, but decreases from the value
2na2? [ (g + 4ma)  to zero. The velocity of propagation of the transverse
waves, equal to (gx/Zn)‘/‘, decreases commensurately from the value

at (g/(g 4+ 4na))”

to zero, 1.e. 1t reamains always less than the speed of the ship at any given
instant.

Finally, by applying the method of stationary phase, the amplitude of the
waves can be studied. For this it 1s necessary to determine o, §y &nd
d’q:/dz')ror those values of r and p that satisfy the stationary condi-
tion (7).

From Equations (5) and (6) and the relationship ¢ = tan 'y/(x,— x)
(Fig.1) 1t follows that

d¥@ g at® a? (t — 7)% 12 sin? le
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It is more convenlent to express d3¢/d'ra in terms of the pera.meters. a
and o , by substituting the expression cos 8 = oa{l —qa)-! and r=gaet®ed”;
then

d*q g (223 (1 — ¢?) — 302 (2 — ¢?) + 62 — 2] 15
P iy Bt (1 — @) (13)
It 1s apparent that 9" (¢, ¢) <0 when 0 a<a, and 9" (2, ¢) >0 when

a, < a<< (14 ¢)t, The contribution of a point of stationary phase to the
integral (3) is given by the following Formula {2 and 3]

e 0~ @ 9 () sim[e @ O£ | (16)
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Here, o, and o are parameters characterizing the position of the point
of stationary phase on the course of the ship for a given point p(x, yg.

The sign of the additlve constant i /4 1s taken 1in agreement with that

of m”%u, e¢). As was noted above, to each point within the region of dis-
turbance there correspond two palrs of values of the parameters o and o
which satisfy the stationary condition; one pair (g,; a,) pertains to the
system of transverse waves (@7 (@y; ¢) >0, a,< a1 <{(1-}+ ¢)~1) while the second
pair (0.5 ap) refers to the system of divergent waves (g” (a,'¢;) << 0, 0 < oy < at,).

In view of the above, the relationshlip for the region within the zone of dis-
turbance 1is found to be
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From thils formula 1t 1s seen that the two systems of waves differ in phase
by rr/2 at every point where o,=¢, . Fassage from the o, a parameters
to x5 y coordinates is achleved by Expressions (12).

Equation (17) is not applicable on the boundary of the region, where
o (as ¢) = O . To determine the amplitude along the boundary it is necessary
to calculate the derivative ¢“(a, ¢) for the condition o”(a, o) = O .
Without difficulty, it 1s found that

P 6g (2 — a) [a2 (1 — ) — 20+ 1]

at = o Fab (1 — a) (18)
The amplitude along the boundary 1s given by Expression [2 and 3]
T (/) ( 6 )‘/:
s i) ~ = a e i o 1
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Since q«, 1s a root of Fquation (13), the parameter o can be eliminated,
expressing It in terms of o , as follows
2(1 —a)
2 . AT
¢ =@@—20) (20)

Substitutlion of the expressions for o, y and ¢ on the boundary of the
region into Equation (19) and taking into account Equation (20), it is found
that
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Formulas {10) permit expression of the parameter o 1in terms of the x,y
coordinates of points on the boundary of the reglon of disturbance.

As is well known, the method of stationary phase 1s applicable to rapldly
fluctuating functlons, and hence the approximation will be sufficlently valid
if the phase 1in Equation (17) 1s sufficlently large, i.e. if #¢/ag 18 suf-
ficlently large. Physically, this means that the approximatlor will be
satisfactory at sufficlently large distances from the point impulse.

C(xr Y, t) ~
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