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The present paper is concerned with the waves generated by a ship moving in 
an incompressible, viscous fluid of infinite depth. The motion is assumed 
rectilinear withunlform acceleration and with zero initial velocit~although 
the last restriction is not in principle necessary. In order to simplify 
the problem, the ship is replaced by a point impulse of pressures. 

A solution was obtained in [1] for the waves generated by a surface pres- 
sure distribution po(x, y, t) on the surface of a viscous, incompressible 
liquid of infinite depth initially at rest; the equation of the free surface 
was found to be t ~  SSS (x, y, t) -- 2n~ Po (u, v, T) a (t -- T, r) du dv dT (t) 

0-~-~ 

gvt~ ( vg2t5 ) 8 r  4 gt24r G (r, t) ~ ~ exp  s in  , r = ] / - (x  - -  u) 2 --~ (y - -  v) 2 

The origin of coordinates is taken at the free surface in the equilibrium 
position, with the ~-axis directed vertically upward. 

Under the assumption that the ship moves in the negative x-dlrection, the 
expression for Po is found in the given case to be 

po (x, Y, t) = Q8 (y) 6 (x + l~at2) 

where a is the acceleration of the ship, and Q is the constant intensity 
of the impulse. When this expression is substituted into (1), the equation 
of t~e free surface assumes the form 

t co oo 

( ~ , y , t ) ~ - -  Q 2~lz ~ I I 5(°)5(u-[-1/2aT2) G ( t - -  T,r) dudvdT 
0 -oo - o o  

The properties of the 6-function permit this to be written in the form 

Qg i (  t _ T)3 ( vg2 ( t -  T)5 I g ( t -  ~)2 
(x, y, t) --- - -  8 ]/-2-n--~ J r ~  exp , 8r  4 / s i n  4r  d r  (2) 

0 

r : ¥"  (x  "Jr" 1/2a~:2)~ -[- y2 

A ahange of variables is useful at this point. Let "~'=t--v, x'=x~at z, 
i.e. let the origin of coordinates be placed at the point impulse; at the 
same time, t = 0 corresponds to the origin of coordinates, while the time t 
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corresponds to the start of the motion. With the primes dropped from x an(l 
• r , we o b t • i n  

Qg ~ x a vg~ x ~ \ 
(z, y, t) 8 lfff,1lp 3 ~ exp  ( - -  " g+' dx - 8 r '  ] s:m 4 r  (3) 

o 

r = K ( x  - -  a t *  "I- i/soTs) , '-~ y' (4> 

Preparatory t o  f l n d ~ q ~  the integral In Equation (3) by the method of sta- 
tionary phase, It Is rewritten in the form 

y, 0~ .~ ~ (T) sin ~ (3) (-, dx 
w 

o 

• ÷ (.,+) 

Then 

= + ( 7  , -~1  (m 
The condition of stationary phase leads to the following rel•tlonship 

dr 2r 
- -  = - -  a (t x) cos 0 (6) d r  

Here dr/d~ i s  fOUnd in accordance with Eq~tlon ( ~ ) ,  .and O is the 
angle between the vector ~ and the negative x-dlrectlon (Fie.l). Expres- 
sion (6) Is more conveniently written in the form 

r = ~/,ax (t -- ~) cos 0 (7) 

The slEnlflcance of this relatlonahlp lles In the fact that for a given 
point P(x, ;/),it determines those points ~ 
on rJ1e o~urse of the sh~ t~alohe pla~r a role in 

• +t 

P ~ .  i 

g e n e r a t ~  • d £ s t u ~ b ~ e  I t  p a n d  ~ t C h ,  follow- 
l r ~  ~t .o~er ,  w i l l  be call.~ ~ l u e n o e  p o i n t s .  Eq'ma- 
~Lcn ~?) ml~ be i n t e r p r e t e d  11~o ~ • d.l.fferel~t wa3 : 
i t  y i e l d s  t h e  p o l a r  ooordJ4~a tes  r ,O r e l a t i v e  
to a pole it N, of •ii points for which X~ 
xs an irLfluenc~ point In the above sense. 
These points lle on a circle of diameter 
~a~(~ -- ~) and whose center lles on the ship's 
course at • distance ~g~ -- ~%0~ I from the 
o r i g i n  o f  c o o r d i n a t e s  ( F i ~ . l ) .  I t  I s  now c l e a r  
t h a t  t h e  d i s t u r b a n c e  g e t . r a t e d  by t h e  s h i p  d o e s  
n o t  a f f e c t  t h e  e n t i r e  l i q u i d  s t t r F a c e ,  b u t  i s  
l i m i t e d  t o  t h e  r e t i e d  c o v e r e d  by t h e  t o t a l i t y  

of c i r c l e s  o f  i n f l u e n c e .  The 
o f  • o n e - p a r • r a t e r  f ~ l y  o f  c i r c l e s  o f  i n f l u e n c e .  The e q t m t l o n  o f  t h e  
f a m i l y  Of t h e s e  c i r c l e s  I s  

(x - -  * /4azt + ] / ,aTl )  2 + y2 = ]~is aST s (t - -  T) s (0 ~ T ~ t) 

D l f f e r e n t i & t l o n  w i t h  r e s p e c t  t o  t h e  p ~ r a m e t e r  x y l e l d s  

(x  - -  : / , a r t  + l / , a ~ )  ( a ,  - -  V ,a t )  = 1 / ~ , ,  (t - -  ~)  (t - -  2 . )  

From t, h l s  i t  £o l l c~s "  t h a t  
4t  - -  3 ,  a '**  (t  - -  T~' t 

z =  at~ 6 t - - 4 T  ' yt = 2 ( 3 1 - -  2~) s 

boundary  of t h l a  r e g i o n  w i l l  be the  enve lope 

(8) 

(9) 

~he ~ t 4 r  ~ , hsv lnE  the  d ~ 1 ~  o f  t l a e ,  oen be z ~ l & ~ i  b7 • 
d l a e m l m t l e s s  ~ a e t e r  • , deZ ined  ~ t h e  r e l • t l o ~ h i p  T - -  ~ ,  0 ~ a ~ i .  
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The equation defining the boundary of the region of influence is then 

at e 4 - -  3(7. at 2 V-2= ( 1 - = )  '& 
x ~ - ~ a  3 - - 2 ~  ' Y ~ ±  2 3 - - 2 ~  (10) 

FIE.2 depicts the boundaries for various values of time t (in the moving 
system of coordinates). The dashed llne repre- 

ly I I 

F i g .  2 

sents the region of influence in uniform motion. 
Calculation shows that the angle of spread of the 
disturbance zone depends upon neither accelera- 
tion nor time, and coincides with the value of 
the angle in uniform motion. The region is now, 
however, bounded by a closed curve, changing with 
time and similar relative to the origin of coor- 
dinates, with the similarity coefficient ~at a . 

Construction of curves of constant phase is the 
next step. The coordinates of points P(x, y) at 
which the disturbance is to be calculated can be 
written in the form 

x ~- O Q - -  r c o s O  = a t x - -  U2ax z -  r c o s O ,  y - -  r s i n O  

I n  view of  c o n d i t i o n  ( 7 ) ,  x and y cam be e x p r e s s e d  i n  te rms  of  r as 
follows 

ax2 2r2 ( 4r '  )V. 
x = a t x - -  2 a x ( t - -  x) ' Y = "q- r l - - a = x 2 ( t _  x) ~ 

Next is found the locus of points for which the phase ~ ~ I/agxZr-* = const. 

Writing r in terms of ~ leads to the equation of the curves of con- 
stant phase 

ax = gSxS gx 2 [ g=T' ]% 

x =  a t x - -  2 8aq~ (t - -  x) ' Y =  q-  ~ _ t  - -  4aaq~( t _  x)sj 

These formulas can be simplified; introduction of the quantity 0 "  ~g/a~P 
and the dimensionless ratio a leads to the result 

at '  = [ ~ = ( t _ _ e = ) _ _ 3 = ~ _ 2 ]  ' y ___ ~ at 2 ca" ] / = 2 ( t _ _ ¢ a ) _ _ 2 a _ ~ i  (1t) 
x - -  2 t - - a  2 i - - ¢ z  

Inasmuch as the subradlcal expression in the above formula cannot be nega- 
tive, limits to the variation in a are given by the inequality 

0 < = < (i + c)-*. 

AscrlblnE some fixed value to o and varyin E a within the above, limits 
results in a constant-phase curve. The shape of these curves is shown in 

~ x  
0 B Q, Q~ = t ~ 2  

Fig. 3 

Fig.3. Clearly visible are the systems of divergent and transverse waves, 
Just as in uniform motion. From Equations (ll) it follows 

d= at s 12= s ( l - c = ) - 3 ~ s ( 2 - ~ 4 ) + 6 a - 2 ]  
d= 2 ( I  - -  . )s  (12) 

dy at = c~[2m s ( t - c  = ) - 3 ~ ' ( 2 - c  2 ) +  6 = . - - 2 ]  
"d= = : F  2 (t _ = ) ,  i / = =  (t _ c=) ' ~ = ~ + ~  
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The singular points of the curves correspond to the values :a - a. , for 
which 

M ( a ,  c) : w  ~ ( i  - -  c 2)--- 3~ 2 ( 2 - - c  2) + 6 a - -  2 =: 0 (17,) 

These points lie on the boundary of the region of disturbance. It is also 
apparent from the construction that the system of divergent waves is obtained 
as a varies in the interval 0 ~ <m., while transverse waves correspond 
to values of a within the limits a.<a~(l~-c) -I 

It can be shown that curves of constant phase are normal to lines drawn 
back to the corresponding influence points. Indeed, from Equations (12) it 
follows that 

dy cot t 
dx = : T  ] / a ~ ' ( t '  c 2) ..... 2a--~- t --  tart 0 ('1(4) 

Here Equation (7) was used, which leads to the result 

ta.O = ~ [ a  2 ( 1 - c  2 ) - 2 ¢ ¢ +  1] '/'(ca) - 1  

Equation (14) shows that the curves of constant phase are indeed orthogo- 
nal to lines drawn back to the corresponding influence points (FIE.3). Since 
through each point lying within the region of disturbance (with the exception 
of those lying on the ship's course) there pass two curves of constant phase, 
each such point is associated with two influence points. Also worthy of note 
is that when a - (I + o) -I , x - 0B (Fig.3), and it follows from Eqpaatlon 

( 1 ± ) ,  at '~ at "~ 2a(p 

x - -  2 (1 -f- c) 2 g ~ - 2 a t p  

Now the length of the transverse waves can be found, since a change in 
phase of 2, corresonds to a wave length. Indeed, 

at 2 4 ~a g 

= 2 (g ~- 2a~) (g -~ 4ha ..~ 2a~) 

With increasing distance from the origin of coordinates, the phase 
increases from 0 to = , and hence the length of the transverse waves ~oes 
not stay constant, as in uniform motion, but decreases from the value 
2~a2t ~ / (g ~-4~a) to zero. The velocity of propagation of the transverse 
waves, equal to (gA/2~)V,, decreases commensurately from the value 

at (g/(g -~- 4~a)) '/~ 

to zero, i.e. it reamains always less than the speed of the ship at any given 
ins rant. 

Finally, by applying the method of stationary phase, the amplitude of the 
waves can be studied. For this it is necessary to determine ~, $ and 
d~/d~ a for those values of r and O that satisfy the stationary condi- 
tion (7). 

From Equations (5) and (6) and the relationship O " tan-ly/(X, - x) 
(Fig.l) it follows that 

[ ax~ a ~ ( t - - " r ) '  x2 s i n 2 0 ]  
d2q) g t -}- ~ r  cos 0 -- 
dx 2 - -  2r 2r 2 

I t  Is more convenient to express d ~ / d v  ~ in terms o f a ~ h e  parameters s c 
and o , by substituting the ~xpression cos 8 - oa(l -- " and r-~a~ oa~';  
then 

d2(p g [2~ a (1 - -  c 2) - -  3a 2 (2 - -  c') -b 6~ - -  2] 
dx 2 -- at 2 can 4 ( t  -- a) (15) 

I t  i s  a p p a r e n t  t h a t  ~" (a, c) ~ 0 when O ~  a ~ a .  and  ~" (a, c ) ~ O  when 
a..~ et < (|-~ C)-I. The contribution of a point of stationary phase to the 
integral (3) is given by the following Formula [2 and 3] 

( .~'/. s in  [q~ (a, c) :]:: -~-]  (16) 
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Here, c and a are parameters characterizing the position of the point 
of stationary phase on the course of the ship for a given point P(x, y). 
The sign of the additive constant + n/4 is taken in agreement with that 
of ~"(a, c). As was noted above, to each point within the region of dis- 
turbance there correspond two pairs of values of the parameters o and a 
which satisfy the stationary condition; one pair (o, ; a, ) pertains to the 
system of transverse waves (~ (~i; el) ~0, a~ ~i~ (I ~- c)- ) while the second 
pair (c~ ; as ) refers to the system of divergent waves (@~ (ot~; c~) <0, 0 ~ ~ ~,). 
In vi.w of the above, the relationship for the region within the zone of dis- 
turbance is found to be 

~ _  2 Q V ~  _[ (t-~1) v~ ( 2~g~ ~ . ( g + ~ ) +  
(~, 

y, t) ] f ~ p a V . t  4 aiaci% MV ' (ai;  ci) exp -- 

(1 - -  as) '/' ] 
"4-ct~%2%M'/,(a~;cs) exp(  - a'tacs'~2 82vg2 )sin(2~c2 - - ~ )  ] (t7) 

From this formula it is seen that the two systems of waves differ in phase 
by ~/2 at every point where c," ca • Passage from the c, a parameters 
to x, y coordinates is achieved by Expressions (12). 

Equation (17) is not applicable on the boundary of the region, where 
~"(a, c) = 0 . To determine the amplitude along the boundary it is necessary 
to calculate the derivative ~"(ot, o) for the condition ~"(ot, a) " 0 . 
Without difficulty, it is found that 

datp 6g (2 - -  ot) [a 2 (t  - -  c 2) - -  2a -+- t l  
d ~ -  at a c2ot a (1 - -  a) (18) 

The amplitude along the boundary is given by Expression [ 2 and 3] 

I ~ ( 1 / 3 )  ( 6 ~'A . 

(~, y, t) ~ ~ ,  (%) 19" (~,) I} sm 9 (~,) (19) 

S i n c e  a .  i s  a r o o t  o f  E q u a t i o n  ( 1 3 ) ,  t h e  p a r a m e t e r  v c a n  be e l i m i n a t e d ,  
expressing it in terms of a , as follows 

2 ( l  - -  ¢t)3 
c2 -- ot~' ~3 -- 2ct) (20) 

Substitution of the expressions for ~, ¢ and ~ on the boundary of the 
region into Equation ~19) and taking into account Equation (20), it is found 
that 

Q I' (x]a) gV, (3 -- 2ot) "/ '  

(z, y, t) ~ 2 V -3~p~ ' l ' t  4 ot'~ (t  -- ot)~'/" (2 - -  ct)'/* x 

[ ~,gSot (3 - -  2¢t) ~ ] got (3 - -  2ot) '/* 
× exp  . - -  2a~ta (1 - -  a)s ". s in  2 Yr~,a (t - -  ot)'/' (0 ~< ot ~ t) (2t)  

Formulas (IO) permit expression of the parameter a in terms of the x,y 
coordinates of points on the boundary of the region of disturbance. 

As is well known, the method of stationary phase is applicable to rapidly 
fluctuating functions, and hence the approximation will be sufficiently valid 
if the phase in Equation (17) is sufficiently large, i.e. if ~g /ao  iS suf- 
ficiently large. Physically, thls means that the approximatioff will be 
satisfactory at sufficiently large distances from the point impulse. 
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